
Journal of Dental Sleep Medicine Vol. 3, No. 1, 201611

JDSM

Upper airway patency is balanced by both oro-pharyngeal muscle activity and the intraluminal negative pressure caused by respiratory 
muscles during sleep and anesthesia. The mechanical upper airway properties may become the dominant factor governing upper 
airway collapsibility both during sleep and sedation due to the significant depression of consciousness and the impairment of neural 
mechanisms controlling compensatory neuromuscular responses. It is recognized that the pathogenesis of upper airway obstruction, 
due to alteration of consciousness during sleep and sedation, might be similar. Furthermore, the clinicians who manage obstructive 
sleep apnea patients should also be aware of the pathogenesis of upper airway obstruction during sleep. Anesthesiologists and surgeons 
who are responsible for airway management during procedures under sedation and the perioperative period should therefore be well 
versed with the physiological and pathophysiological mechanisms affecting upper airway patency. This review article presents the 
current understanding of mechanisms for maintaining upper airway patency during sleep and sedation based on the similarity of the 
pathophysiology governing upper airway patency. Possible mechanical interventions based on a quantitative analysis of upper airway 
collapsibility analyzing inspiratory flow limitation are also discussed.
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INTRODUCTION

Upper airway patency depends on an appropriate balance 
between the dilating force of the pharyngeal muscles and the 
collapsing force of negative intraluminal pressure, which is 
generated by respiratory pump muscles. It is well accepted that 
maintenance of upper airway patency is a critical issue during 
sleep and sedation, because loss of consciousness may induce 
a depression of central respiratory output1–3 by altering hyper-
capnic and hypoxic ventilatory drives, and it may decrease 
muscle contractility via cellular mechanisms by blocking 
sarcolemmal sodium channels.4 Furthermore, it has been 
suggested that the neuromuscular activity of upper airway 
dilator muscles, such as the genioglossus and geniohyoid, may 
be affected by depression of hypoglossal motor neurons, which 
regulate tonic activation of these muscles. These influences, 
in association with depression of consciousness during sleep 
and sedation, may result in hypopnea and apnea due to upper 
airway obstruction. It has been suggested that the pathophysi-
ology of upper airway obstruction might be similar in sleep 
and sedation.5,6 Furthermore, the maintenance of mechanical 
upper airway properties may contribute significantly to upper 
airway patency. Therefore, understanding of the pathogen-
esis of upper airway obstruction may help establish clinical 
diagnostic and treatment methods in both sleep and sedation. 
Clinicians who are responsible for airway management during 
sleep and sedation should, therefore, be familiar with the phys-
iological mechanisms influencing upper airway patency. This 
review article presents the current understanding of mecha-
nisms for maintaining upper airway patency and discusses the 

developmental aspects of the mechanisms, based on a quanti-
tative analysis of upper airway collapsibility using the concept 
of flow limitation. Furthermore, the similarity of the patho-
physiology of upper airway obstruction between sleep and 
anesthesia based on the features of upper airway obstruction is 
also discussed. Lastly, the implications of the changes of upper 
airway patency by mechanical interventions during sleep and 
anesthesia are discussed.

PATHOGENESIS OF UPPER AIRWAY 
OBSTRUCTION UNDER ANESTHESIA

The anatomical structure of the upper airway is characterized 
by a balanced combination of soft tissue components (tongue, 
soft palate, and pharyngeal mucosa) and bony structure 
components (maxilla, mandible, and vertebrae).7 Upper airway 
patency is determined by precise interaction between the 
mechanical properties of the upper airway (anatomical mech-
anisms) and neural regulation of pharyngeal dilator muscle 
activity (neural mechanisms). Previously, the Neural Balance 
Model8 and the Anatomical Balance Model9 were introduced 
to understand how the upper airway is protected against upper 
airway obstruction during anesthesia.

RESPONSE TO ACUTE AND SUSTAINED 
PARTIAL UPPER AIRWAY OBSTRUCTION

Upper airway obstruction during sleep plays a pivotal role in 
the pathogenesis of obstructive sleep apnea10 and is caused 
by structural defects and disturbances in neuromuscular 
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control.6 Upper airway obstruction can elicit neuromuscular 
responses that mitigate and/or compensate for the obstruction. 
Under conditions of upper airway obstruction (inspiratory 
airflow limitation), immediate responses in respiratory timing 
indices can help restore ventilation11 and blunt disturbances in 
gas exchange.12 Nevertheless, the impact of respiratory pattern 
responses on ventilation during periods of upper airway 
obstruction remains unclear. It has recently been suggested that 
the respiratory cycle, but not the respiratory rate, determines 
the individual’s ability to compensate for inspiratory airflow 
limitation during sleep13 and during propofol anesthesia,5 and 
it may represent a quantitative phenotype for obstructive sleep 
apnea susceptibility.

It has also been indicated that the compensatory neuro-
muscular response to upper airway obstruction is partly intact 
during propofol anesthesia with spontaneous breathing.5 
Interestingly, it has been reported that there was a significant 
difference in the compensatory neuromuscular response to 
upper airway obstruction between male and female subjects 
during midazolam sedation.14 In natural NREM sleep, there 
was a significant difference in the compensatory neuromus-
cular response to upper airway obstruction between OSA 
patients and healthy subjects.6 It is easy to expect that patients 
with depressed neuromuscular activity, such as cerebral palsy 
patients, may have weaker effects of this function. Further-
more, similar to OSA, aging may affect the magnitude of 
the compensatory neuromuscular response to upper airway 
obstruction.

During natural sleep, when sustained partial obstruction or 
complete obstruction occurs, the obstructed upper airway is 

re-opened by a brief arousal response, resulting in the return 
of muscle tone.15 During sedation, the decrease in muscle tone 
associated with reduction of consciousness is compounded 
by specific drug-induced inhibition of upper airway neural 
and muscular activity and suppression of protective arousal 
responses. This depression of the arousal reflex during seda-
tion even more than during NREM sleep might increase upper 
airway obstruction, such that external mechanical interven-
tion may be needed to overcome the obstruction. Furthermore, 
the role of chemoreceptors from carotid body and retro-
ambiguus nucleus may be depressed during sedation and anes-
thesia.16 Although the arousal response against sustained upper 
airway obstruction is a fundamental defensive mechanism in 
the compensatory neural system to maintain upper airway 
patency, this arousal response may be even more depressed as 
anesthetic depth increases.

EVALUATION OF UPPER AIRWAY 
COLLAPSIBILITY

Concept of Flow Limitation and Critical Closing 
Pressure (PCRIT) (Figures 1–4)
Upper airway collapsibility is evaluated by static imaging 
analysis via 2 dimension computerized tomography (CT) or 
magnetic resonance imaging (MRI), and 2 dimension cepha-
lography X-ray, as well as dynamic analysis using the pressure-
flow/volume relationship and pressure-cross-sectional area 
curves.

Among these quantitative analyses of upper airway patency, 
determination of the airway pressure that causes airway 
collapse and inspiratory airflow limitation in patients with 
obstructive sleep apnea has been used extensively in sleep apnea 
research. The application of negative airway pressure to deter-
mine the collapsibility of the upper airway using pressure-flow 
relationships, as seen with flow limitation or complete obstruc-
tion, has been used during anesthesia and sleep. The concept of 
critical closing pressure (PCRIT) arises from modeling the upper 
airway as a simple collapsible tube and generation of multi-
point pressure flow (P-Q) relationships, which are then used 
to assess upper airway patency.17 Schwartz et al.18 indicated 
that the upper airway patency can be explained by a Starling 
resistor model (Figure 1), in which inspiratory flow limita-
tion occurs once upper airway upstream pressure falls below 
a critical closing pressure (PCRIT). It has been shown that PCRIT 
(representing nasal pressure at zero flow, an index of upper 
airway collapsibility) and resistance (which reflects the degree 
of upper airway narrowing upstream to the site of collapse) 
are key elements governing upper airway patency. PCRIT can 
be estimated for the quantitative evaluation of upper airway 
patency based on nasal pressure and maximum inspiratory 
airflow in laboratory and has been validated for clinical usage 
or a research tool, even though this is not easy to extract from 
ordinary respiratory parameters. It is worth mentioning the 
clinical significance of PCRIT. In fact, a ~5-cm H2O decrease in 
PCRIT, due to increased neuromuscular activity, has the same 
stabilizing effect as applying ~5 cm H2O of continuous positive 
airway pressure (CPAP) in reversing upper airway obstruction 
in obstructive apnea patients. It was previously suggested that a 

Figure 1—Mechanical analogue of upper airway 
consists of a two tube with a collapsible segment, 
upstream (nasal) and downstream (hypopharyngeal) 
segments. 

The collapsible segment collapses only when tissue surrounding 
pressure exceeds intraluminal pressure. Under the conditions 
of airflow limitation, maximal flow (VI max) is determined by 
the gradient between the upstream nasal pressure (PN) and 
the PCRIT, and the resistance (RN) upstream as described in the 
equation, VI max = (PN − PCRIT) / RN. PN = nasal pressure, PHP = 
hypopharyngeal pressure, RN = resistance in nasal segment, PHP = 
resistance in hypopharyngeal segment.

King ED. Am J Respir Crit Care Med 2000;161:1979–84
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Figure 3—A schematic of the experimental protocol for producing upper airflow obstruction.

The polysomnographic recordings include the electroencephalogram (EEG), electro-oculogram (EOG), intramuscular genioglossus 
electromyogram (EMGGG), nasal mask pressure (PN), pneumotach airflow (V = Flow), esophageal pressure (Peso), and impedance 
plethysmography (RESP). A stable unobstructed breathing pattern was initially maintained at a positive holding pressure. Thereafter, PN was 
lowered by 2 cm H2O steps until a quasi-steady state flow-limited breathing pattern associated with a 40% to 50% reduction in VI max (partial 
obstruction) was achieved. Subsequently, PN was lowered in a stepwise fashion by 2 cm H2O every 5 breaths, until zero flow of complete 
obstruction associated with an increase in respiratory negative pressure was obtained or SpO2 reached a lower limit of 88% to 90%.

Hoshino Y. Respir Physiol Neurobiol 2009;166(1):24–31.

Figure 2—Diagram of the experimental setup. 

A nasal mask attached to a pneumotachograph is connected via tubing to either a positive (+ve) or negative (−ve) pressure source. 
Electromyography of the genioglossus muscle (EMGGG) was recorded using fine wire intramuscular electrodes positioned percutaneously. 
Respiratory effort was determined by an esophageal pressure transducer-tipped catheter that was inserted via the nares. The bispectral index 
(BIS), electroencephalography, and submental surface EMG were recorded to monitor depth of anesthesia.

Hoshino Y. Respir Physiol Neurobiol 2009;166(1):24–31.
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change in PCRIT of ~5 cm H2O due to neuromuscular activity is 
clinically relevant,6 since this represents the magnitude of the 
response required to convert either obstructive apneic events 
to less severe hypopneic events or hypopneic events to stable 
breathing. Because the PCRIT measurements can be clinically 
relevant for evaluating upper airway collapsibility in patients 
during anesthesia and sleep, this method might be useful for 
investigating the pathophysiology of upper airway obstruc-
tion occurring during monitored anesthesia care. The advan-
tage of this model is that it gives a global measure of upper 
airway collapsibility that includes both the structural and 
neuromuscular factors that determine upper airway collaps-
ibility. More recently, advanced methods for evaluating both 
the mechanical properties and the compensatory neuromus-
cular responses to upper airway obstruction were predicted.5,6 
The most recent paper revealed that the PCRIT can be assessed 
by the analysis software (PCRIT Analysis Software in a numer-
ical computing enviroment with 4th generation programming 
language: PAS) to streamline PCRIT analysis using quantitative 
airflow measurement data in clinical cohorts study.19

PATIENT FACTORS PREDISPOSING TO 
UPPER AIRWAY OBSTRUCTION

Patient Position during the Procedure

Supine Position
The supine posture predisposes to upper airway obstruction, as 
the effects of gravity increase the extra-luminal compressive 
forces exerted by the tongue, soft palate, and related structures, 
resulting in narrowing of the retropalatal and retrolingual 
spaces.20

Head Down Posture:
The table tilt with head down position is recognized as being 
unfavorable, because of loss of longitudinal tension on the 

upper airway and fluid displacement into the upper airway 
region. Fluid displacement from the lower body to upper airway 
regions may increase upper airway collapsibility. Shepard et al. 
suggested that fluid accumulation in soft tissues surrounding 
the upper airway may increase pharyngeal collapsibility in 
patients with OSA.21 It has also been shown that ~375 mL of 
fluid displacement from the legs by lower body positive pres-
sure increases upper airway collapsibility by about 7.6 ± 1.9 cm 
H2O in healthy, non-obese men while awake.22 More recent 
studies have shown that fluctuation of estrogen and proges-
terone levels is coupled to fluid shifts from the vascular into 
the interstitial fluid compartments, causing edema.23–25

Neck Flexion
Neck flexion reportedly decreases pharyngeal size and increases 
passive PCRIT in anesthetized patients.9,26 Walsh et al.26 reported 
that neck flexion with 10-degree deviation from the neutral 
position produced a 4.9 ± 3.1 cm H2O increase in passive 
PCRIT. Head elevation with a pillow seems to dose-dependently 
improve pharyngeal patency, although the possibility of simul-
taneous neck flexion would attenuate the beneficial effects 
of head elevation.27 Accidental neck flexion may easily occur 
during surgical procedures in the oro-pharyngeal region.

Bite (Mouth) Opening
It is essential to keep the mouth open during oral-maxillofacial 
surgical procedures and dental treatment. However, as has been 
previously reported, this may cause obstruction.28,29 Mouth 
opening decreases the space enclosed by the maxilla, mandible, 
and cervical vertebrae and increases the soft tissue volume 
inside the bony box, similar to that with neck flexion, since 
the mandibular movement with mouth opening is essentially 
the same as that which occurs with neck flexion.9,28 Accord-
ingly, the resultant increase in passive PCRIT is predictable by 
the possible anatomical imbalance during mouth opening. In 
fact, passive PCRIT increased significantly by 5.1 cm H2O with 
the mouth open.28 Mouth opening may change the vector force 
direction of the pharyngeal dilator muscles. Obviously there 
are high risks of increased upper airway collapsibility by exis-
tence of large tonsils30–32 and macroglossia.33,34

Mechanical Displacement of the Tongue
Clinically, the tongue is frequently manipulated during 
surgical procedures in the mouth, with compression by instru-
ments (tongue retractor) to avoid accidental injury by surgical 
instruments or to maintain the surgical view. In contrast to the 
beneficial effect of tongue protrusion on upper airway collaps-
ibility35 during sleep, downward displacement (retrograde) of 
the tongue in supine position might increase upper airway 
collapsibility during sleep.36,37 Although the effect of tongue 
displacement on upper airway collapsibility during anesthesia 
has not been well established, we should be aware of the poten-
tial risk of surgical procedures in the oro-pharyngeal region.

Patients’ Individual Anatomical Factors
It is well recognized that obesity, micrognathia, macroglossia 
and maxillary hypoplasia, acromegaly, Down syndrome, 
Pierre-Robin syndrome, or other craniofacial abnormalities 

Figure 4—The change of compensatory 
neuromuscular response during propofol anesthesia.

The analysis of critical closing pressure (PCRIT) and upper airway 
resistance (RUS) is shown. PCRIT is calculated as a value of nasal 
pressure at zero flow by a linear regression analysis between 
maximum inspiratory airflow and nasal pressure.

Hoshino Y. Respir Physiol Neurobiol 2009;166(1):24–31.
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are major anatomical risk factors for upper airway obstruction. 
The degree of obstruction depends on the anatomical abnor-
malities in the pharynx. Furthermore, sex and age may other 
factors for controlling upper airway patency.

Recently, we demonstrated that female patients in the 
luteal phase of their menstrual cycle had an increased passive 
PCRIT during propofol anesthesia. This conceivably reflects 
the development of pharyngeal edema due to the effect of 
sex hormones.38 Based on evidence that there is a significant 
increase in edema formation in the upper airway region during 
the late-luteal phase in premenstrual dysphoric disorders,39 we 
speculated that upper airway collapsibility may be significantly 
increased by edema formation40 in the premenstrual phase, 
especially when there is a reduction of neuromuscular activity 
during shifts in progesterone level. We believe that our find-
ings may provide new insight into the management of seda-
tion in pregnant women, since they have much higher estrogen 
levels and significant upper airway edema.

Several studies have shown that surface tension41–43 
and saliva production44 are important factors controlling 
upper airway patency, because surface tension is impor-
tant for re-opening closed upper airways. These studies 
demonstrated that reduction of the surface tension in the 
upper airway mucosa by one-third can reduce the differ-
ence between the opening pressure and the closing pres-
sures of the upper airway by 2 cm H2O. Furthermore, our 
recent study found that an increase of 100-nM phosphati-
dylcholine decreases surface tension of saliva by ~17 mN/m. 
Surface tension may be increased in Sjögren syndrome.45 
Kirkness et al.42 revealed that changes in surface tension 
significantly reflect the changes in upper airway opening 
pressure without affecting the upper airway closing pressure 
in humans. Deformation of the upper airway by negative 
transmural pressure during inspiration alters the activity of 
upper airway mechanoreceptors, causing a reflex increase in 
upper airway muscle activity. There may be significant influ-
ence of inflammation of pharyngeal tissue and neuropathic 
changes in tissue on reduction of reactivity in maintaining 
upper airway patency.

EFFECT OF SEDATION ON UPPER AIRWAY 
COLLAPSIBILITY (PCRIT)

It has been reported that the upper airway tends to get 
obstructed during sedation. Changes in upper airway patency 
during sedation appear to vary with the agents used, which 
include intravenous anesthetics (propofol) and sedative drugs 
(midazolam).46,47 Midazolam and propofol are common anes-
thetic agents administered to provide anxiolysis, sedation, and 
amnesia during interventional procedures due to their rapid 
onset and limited duration of action. Although the effects of 
midazolam and propofol anesthesia are believed to be equiva-
lent in terms of upper airway patency47 during moderate levels 
of monitored anesthesia care, upper airway collapsibility 
dose-dependently increases as depth of anesthesia increases 
with each anesthetic agent.46,48 Norton et al.47 suggested that 
midazolam and propofol anesthesia have the same propensity 
for causing upper airway obstruction with mild to moderate 

sedation, based on an analysis using dynamic negative airway 
pressures. Using PCRIT analysis (Figure 1), we confirmed 
that upper airway mechanical properties are similar with 
midazolam (mean value of passive PCRIT = −5.1 cm H2O) and 
propofol (mean value of passive PCRIT = −4.4 cm H2O) even 
during deeper stages of anesthesia.5,28 This value of passive 
PCRIT during anesthesia is similar to the mean value of passive 
PCRIT values (−4.5 ± 3.0 cm H2O) in normal subjects during 
natural sleep.6 Therefore, we concluded that tonic neuromus-
cular activity of upper airway dilator muscles is relatively 
intact during monitored anesthesia care with midazolam and 
propofol, and the upper airway mechanical properties are the 
same as those during sleep. Interestingly, Eikermann et al.49 
showed that ketamine is a respiratory stimulant that abolishes 
the coupling between loss of consciousness and upper airway 
dilator muscle dysfunction over a wide dose range. They also 
indicated that ketamine might help stabilize upper airway 
patency during anesthesia. During sedation or hypnotic-
induced sleep, repeated measurements of upper airway collaps-
ibility appear to have less variability, suggesting that arousal 
and alterations in posture contribute to mechanical alterations 
in upper airway properties.50

Recently, there appears to be a clinical advantage to use 
dexmedetomidine (DEX) for procedural sedation in pediatric 
patients and OSA patients.51,52 In contrast to other sedative 
agents, DEX can provide better sedative properties similar to 
natural NREM sleep, without major respiratory depression. 
Therefore, DEX has recently been recommended for sedation 
during procedural sedation with local anesthesia for children 
and OSA patients.

Topical anesthesia of the upper airway mucosa, which 
greatly reduces this reflex response,53,54 causes an increase in 
upper airway resistance and, thus decreases airflow during 
sleep. Berry et al. suggested that topical lidocaine applied to 
the nasal trigeminal area and hypopharynx-laryngeal area 
markedly induced airflow limitation due to reduction of the 
amount of phasic activity of the genioglossus electromyo-
gram53 during NREM sleep. A previous study54 also showed 
that topical anesthesia might increase pharyngeal resistance 
during stage 1 sleep and at the wake to sleep transitions 
due to elimination of upper airway mucosal mechanorecep-
tors. Although the effect of local anesthesia on upper airway 
collapsibility during anesthesia has not been understood, the 
influence of local anesthesia in the oro-pharyngeal region may 
further modify sensitivity to negative airway pressure and 
chemical reflexes, increasing the patients’ risk during moni-
tored anesthesia care.

HOW CAN UPPER AIRWAY PATENCY BE 
MAINTAINED? (Figures 5, 6)

It is fundamentally impossible to keep the mouth closed during 
a procedure in order to maintain upper airway patency by 
avoiding the effect of mouth opening on the increase in upper 
airway collapsibility. Therefore, we should establish another 
mechanical intervention to maintain upper airway patency. 
How can we minimize the risk of upper airway obstruction 
during a procedure?
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Effects of Mandible Advancement on Upper Airway 
Patency
Previously, we found that mandibular advancement signifi-
cantly decreased PCRIT to −13.3 ± 3.2 cm H2O (p < 0.05 
vs. the centric position), but it did not significantly affect 
upstream airway resistance (Rua) calculated by equation of 
VI max = (PN − PCRIT ) / Rua (22.1 ± 6.3 cm H2O/L/s) during 
midazolam sedation.55 In this study, we evaluated upper 
airway collapsibility in three different mandibular posi-
tions, centric occlusion position, incisors aligned position, 
and mandible advancement position (75% of the subject’s 
maximum possible protrusion without any excessive discom-
fort and pain). Briefly, three different types of rigid-type 
custom mandible appliance were made during awake condi-
tion at different experimental day prior to experimental seda-
tion condition. Three mandibular appliances with centric 
occlusion position, incisors aligned position, and mandible 
advancement position (75% of the subject’s maximum possible 
protrusion) was constructed of clear acrylic resin and 1-mm 
polyethylene plate (Erkodur; Erkodent Inc.; Pfalzgrafenweiler, 
Germany) for each subject in reference to previous study by 
Tsuiki et al.56 This study indicated that mandibular advance-
ment in the incisor-aligned position can decrease both upper 
airway collapsibility by changes of PCRIT and resistance during 
midazolam sedation, and that maximal mandible advance-
ment (maximal comfortable protrusion) may not be necessary 
for the preservation of upper airway patency. We found that 
mandibular advancement produced isolated decreases in PCRIT, 
indicating a decrease in collapsibility at the flow-limiting site.28 
Moreover, this evidence indicates that mandibular advance-
ment should ameliorate sleep apnea if PCRIT falls by 5 to 10 cm 
H2O. In patients in whom moderate upper airway obstruction 
predominates, more modest degrees of mandibular advance-
ment (possibly 25% to 50% of the patient’s maximum possible 

protrusion) should be clinically effective, since decreases 
in PCRIT of only 3 to 5 cm H2O are required to relieve airflow 
obstruction during sleep and sedation. We have also suggested 
that the degrees of mandibular advancement can be titrated 
progressively to relieve obstruction in patients with partial or 
complete upper airway occlusion during sleep,57 possibly due 
to the allowing muscle fibers adaptation. However, it should be 
noted that mandible advancement with mouth opening might 
alter the respiratory phase resetting during swallowing and 
the timing of swallowing in relation to the respiratory cycle 
phase. This finding indicates that mandible re-positioning may 
strongly affect coordination between nasal breathing and non-
nutritive swallowing by altering respiratory parameters and by 
inhibiting movement of the tongue-jaw complex.58

Neck Extension and Chin Lift
Isono et al. reported that neck extension significantly decreased 
closing pressure of the velopharynx and oropharynx.9 They 
observed an approximately 3.5-cm H2O reduction in passive 
PCRIT in the velopharynx and oropharynx and suggested that 
neck extension significantly decreases compliance of the 
oropharyngeal airway wall. Previous studies reported that 
the chin lift caused widening of the entire pharyngeal airway 
during propofol sedation.59,60 They also suggested that the 
improvement in airway collapsibility during the chin lift is 
caused by a combination of increased tension of the pharyngeal 
muscles and forward movement of the muscles attached to the 
mandible. A previous study also confirmed that drug-induced 

Figure 5—Effects of head and upper body position 
on upper airway collapsibility during sedation. 

Opening of the mouth, rotation of the neck, neck flexion, and prone 
positioning cause upper airway obstruction. In contrast, mandible 
advancement, sniffing position, neck extension, and the 30-degree 
Fowler position decrease upper airway collapsibility.

Figure 6—Predicted effects of mechanical 
intervention on changes in critical closing pressure 
(PCRIT) in obese patients during sedation. 

During NREM sleep, the PCRIT is higher in obese patients (BMI 30 
kg/m2) than that in normal subjects (BMI 24 kg/m2) and lower than 
that in moderate OSA patients. If obese patients are managed 
under sedation in the supine position, upper airway collapsibility 
may increase, with higher PCRIT values than during sleep. Positional 
change of mouth opening may further increase upper airway 
collapsibility with higher PCRIT values. Mechanical intervention by 
the attending clinician, in the form of maintaining the patient’s head 
and neck in the 30-degree fowler position or sniffing position, might 
improve upper airway collapsibility. Furthermore, simultaneous 
mandibular advancement may further improve upper airway 
collapsibility, similar to that during NREM sleep in normal subjects.



Journal of Dental Sleep Medicine Vol. 3, No. 1, 201617

Pathogenesis of Upper Airway Obstruction during Sleep and Anesthesia—Ayuse et al.

sleep endoscopy completed with a simulation bite approach for 
the prediction of the outcome of treatment of obstructive sleep 
apnea with mandibular repositioning appliances.61

Sniffing Position (Head Elevation)
Placing the head in the “sniffing position”62 (lower cervical 
flexion, upper cervical extension with full extension of head 
on neck) increases longitudinal tension on the upper airway 
and decreases its collapsibility. Similar to neck extension, the 
sniffing position increases the distance between the mentum 
and cervical column, consequently increasing the space 
enclosed by the maxilla, mandible, and cervical vertebrae. 
This possibly results in a predictable reduction in passive PCRIT 
due to improvement of mechanical factors in the sniffing posi-
tion, although no information is available on changes in soft 
tissue volume in the pharynx. Recently Kobayashi et al. found 
a significant reduction in passive PCRIT by a mean value of 4.3 
cm H2O in response to 6-cm head elevation during propofol 
anesthesia with spontaneous breathing.63 They demonstrated 
that the optimal height of head elevation in normal-weight 
subjects under propofol anesthesia with spontaneous breathing 
through the closed mouth was approximately 6.0 cm.

Lateral Position
Boudewyns reported that PCRIT fell from 1.8 cm H2O in the 
supine position to −1.1 cm H2O (delta 2.9 cm H2O) in the 
lateral recumbent position.64 Another study found that the 
upper airway of a spontaneously breathing child who was 
deeply sedated with propofol widened in the lateral position.65

Head Rotation
We previously demonstrated that head rotation decreased 
upper airway collapsibility in adult subjects during midazolam 
sedation.66 However, we concluded that the therapeutic effect 
was insufficient to maintain upper airway patency. A previous 
study observed that passive PCRIT (−2.8 cm H2O) increased 
significantly when the head was rotated, compared to PCRIT 
(−4.4 cm H2O) in the supine condition (delta 1.6 cm H2O) in 
pediatric patients, indicating a significant increase in pharyn-
geal airway collapsibility in the head rotated position.67

Upper Body Elevation (Sitting Position)
A previous study68 found that a 30-degree elevation of the upper 
body resulted in an improvement of upper airway collapsibility 
compared with both the supine and lateral positions, as seen 
by measuring upper airway closing pressures in patients with 
obstructive sleep apnea. They reported that a 30-degree eleva-
tion caused a 4.3-cm H2O decrease in PCRIT, while adopting the 
lateral position caused a 1.4-cm H2O decrease in PCRIT rela-
tive to the supine position. In our previous study,66 we found a 
5.4-cm H2O decrease in closing pressure after 30-degree upper 
body elevation compared to the supine position. A previous 
study indicated that postural change from supine to sitting 
positions enlarged both retropalatal and retroglossal airways 
and decreased PCRIT in both pharyngeal segments by approxi-
mately 6 cm H2O in completely paralyzed and anesthetized 
patients with OSA.69 They postulated that this improvement 
can be due to mechanical interaction between the thorax and 

upper airway, such that caudal movement of the larynx with 
increasing lung volume results in secondary stiffening and 
dilatation of the pharynx.69

CONCLUSION

Mechanical upper airway anatomy may become the dominant 
factor governing upper airway collapsibility during sleep and 
sedation due to the significant impairment of neural mecha-
nisms controlling compensatory neuromuscular responses. 
It is, therefore, important to understand the effectiveness of 
mechanical interventions and develop a systematic approach 
to evaluating the factors that contribute to maintenance of 
upper airway patency during sleep and sedation.
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